NGF-trkA signaling modulates the analgesic effects of prostatic acid phosphatase in resiniferatoxin-induced neuropathy
نویسندگان
چکیده
BACKGROUND Neuropathic pain in small-fiber neuropathy results from injury to and sensitization of nociceptors. Functional prostatic acid phosphatase (PAP) acts as an analgesic effector. However, the mechanism responsible for the modulation of PAP neuropathology, which leads to loss of the analgesic effect after small-fiber neuropathy, remains unclear. RESULTS We used a resiniferatoxin (RTX)-induced small-fiber neuropathy model to examine whether functional PAP(þ) neurons are essential to maintain the analgesic effect. PAP(þ) neurons were categorized into small to medium neurons (25th-75th percentile: 17.1-23.7 mm); these neurons were slightly reduced by RTX (p¼0.0003). By contrast, RTX-induced activating transcription factor 3 (ATF3), an injury marker, in PAP(þ) neurons (29.0%5.6% vs. 0.2%0.2%, p¼0.0043), indicating PAP neuropathology. Moreover, the high-affinity nerve growth factor (NGF) receptor (trkA) colocalized with PAP and showed similar profiles after RTX-induced neuropathy, and the PAP/trkA ratios correlated with the degree of mechanical allodynia (r¼0.62, p¼0.0062). The NGF inducer 4-methylcatechol (4MC) normalized the analgesic effects of PAP; specifically, it reversed the PAP and trkA profiles and relieved mechanical allodynia. Administering 2.5S NGF showed similar results to those of administering 4MC. This finding suggests that the analgesic effect of functional PAP is mediated by NGF-trkA signaling, which was confirmed by NGF neutralization. CONCLUSIONS This study revealed that functional PAP(þ) neurons are essential for the analgesic effect, which is mediated by NGF-trkA signaling.
منابع مشابه
RET signaling is required for survival and normal function of nonpeptidergic nociceptors.
Small unmyelinated sensory neurons classified as nociceptors are divided into two subpopulations based on phenotypic differences, including expression of neurotrophic factor receptors. Approximately half of unmyelinated nociceptors express the NGF receptor TrkA, and half express the GDNF family ligand (GFL) receptor Ret. The function of NGF/TrkA signaling in the TrkA population of nociceptors h...
متن کاملRab7 Mutants Associated with Charcot-Marie-Tooth Disease Exhibit Enhanced NGF-Stimulated Signaling
Missense mutants in the late endosomal Rab7 GTPase cause the autosomal dominant peripheral neuropathy Charcot-Marie-Tooth disease type 2B (CMT2B). As yet, the pathological mechanisms connecting mutant Rab7 protein expression to altered neuronal function are undefined. Here, we analyze the effects Rab7 CMT2B mutants on nerve growth factor (NGF) dependent intracellular signaling in PC12 cells. Th...
متن کاملNitric oxide donors induce neurotrophin-like survival signaling and protect neurons against apoptosis.
Our previous results showed that inhibition of protein tyrosine phosphatases (PTP) by orthovanadate is an appropriate strategy to mimic nerve growth factor (NGF) effects in neurons, including enhanced phosphorylation of TrkA, stimulation of downstream survival signaling pathways, and protection against apoptotic stress. In this study, we wanted to trigger such NGF-like survival signaling in pri...
متن کاملRabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells
Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NG...
متن کاملCapsaicin-induced corneal sensory denervation and healing impairment are reversed by NGF treatment.
PURPOSE We aimed to evaluate the nerve growth factor (NGF) pathway and its influence on corneal healing mechanisms in normal conditions and in an animal model of corneal denervation induced by capsaicin. METHODS Peripheral sensory damage was induced in rat pups by subcutaneous injection of capsaicin and the effects evaluated by hot-plate test, corneal nerve count, and tear secretion. Corneal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016